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Abstract

Current approaches to15N relaxation in proteins assume that the15N-1H dipolar and15N CSA tensors are collinear.
We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the
two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in
site-specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and
transverse relaxation of amide15N nuclei, of the15N CSA/15N-1H dipolar cross correlation, and of the TROSY
experiment are extended to account for the effect of noncollinearity of the15N-1H dipolar and15N CSA (chemical
shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D||/D⊥ − 1),
is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to
the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become
significant forD||/D⊥ ≥ 1.5, and at high magnetic fields. The effect of noncollinearity of15N CSA and15N-
1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein
structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy
of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a
high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local
orientation in moderately anisotropic systems.

Introduction

NMR relaxation methods provide information about
dynamics of macromolecules in solution, highly im-
portant for understanding various aspects of their
structure and function. There is increasing interest in
NMR relaxation studies stimulated by (a) emerging
applications in structure determination of orientational
dependence of relaxation rates, due to the anisotropy
of the overall tumbling (Tjandra et al., 1997; Clore
et al., 1998; Clore and Gronenborn, 1998); (b) ad-
vances in NMR applications to larger proteins based
on relaxation-optimized approaches (Pervushin et al.,
1997); (c) NMR relaxation methods of assessment
of chemical shift tensors in solution (Fushman and
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Cowburn, 1998; Fushman et al., 1998b); and (d) pos-
sible applications to estimation of segmental entropy
(Akke et al., 1993; Yang and Kay, 1996). These ap-
plications require not only precise but also accurate
analysis of NMR relaxation data. The currently es-
tablished approaches and models (Kay et al., 1989;
Peng and Wagner, 1992), which were designed and
tested on15N relaxation in small, mostly spherical
proteins at moderate magnetic field strengths, require
significant extensions in order to account for devia-
tions from ‘ideal’ behavior, including anisotropy of
overall rotation, site-specific variations in15N CSA,
etc.

Molecular motion causes nuclear spin relaxation in
macromolecules via modulations of both the chemical
shift tensor of the nucleus and the dipolar interactions
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Figure 1. Definition of the Euler angles characterizing relative orientation of the15N-1H dipolar and15N CSA tensors with respect to the
molecular frame,M , defined by the principal axes of the overall rotational diffusion tensor of the molecule. The principal axes, xCSA, yCSA,
and zCSA, of the CSA tensor,CSA, are defined here to be aligned with the most shielded (σ11), intermediate (σ22), and the least shielded (σ33)
components, respectively, of the15N chemical shift tensor. The y-axes of the dipolar and CSA tensors are assumed to be collinear, based on
NMR data for peptides (see text). TheM → NH transformation consists of rotation by angleβ around the YM axis and a subsequent rotation
around the new direction of the NH bond by an angleγ. TheNH → CSA transformation is a rotation around the YDD (=YCSA) axis by an
angleθ. Positive values of the angles correspond to a counterclockwise rotation; therefore the relative orientation of ZCSAand ZNH observed
in small peptides and proteins (as shown in the Figure) corresponds to negative values ofθ (θ = −15.7◦ ± 5◦ (Fushman et al., 1998b)).

of the nucleus with other, usually directly bonded,
nuclei. In many cases, this modulation is simply re-
orientation of the dipolar (DD) and chemical shift
anisotropy (CSA) tensors with respect to the exter-
nal magnetic field. These tensors are, in general, not
collinear. Their relative orientation will influence the
relaxation properties of the NMR observed nucleus,
and therefore are of significance for obtaining an accu-
rate picture of macromolecular dynamics from NMR
relaxation data.

The existing approaches to15N-relaxation data
analysis usually assume that the principal axes of the
15N-1H dipolar and15N CSA tensors have the same
orientation. As has been shown by numerous solid
state NMR studies on peptides (Harbison et al., 1984;
Oas et al., 1987; Hartzell et al., 1987; Hiyama et
al., 1988; Shoji et al., 1989; Mai et al., 1993) and
recent NMR solution studies of proteins (Ottiger et
al., 1997; Fushman et al., 1998b), the two tensors are
not collinear. The noncollinearity is rather small (10–
20◦) and can probably be ignored in the case of small
degrees of hydrodynamic anisotropy. This assumption
might render the microdynamic parameters inaccurate,
when applied to macromolecules with a significant de-
gree of anisotropy, especially, at high magnetic fields,

where the size of contributions to relaxation from the
two interactions become comparable.

In this paper, we assess the effect of noncollinear-
ity of the 15N-1H dipolar and15N CSA tensors on the
15N relaxation in proteins in solution.

Theory

The 15N longitudinal (R1) and transverse (R2) relax-
ation rates in an isolated15N-1H pair can be written in
the following form (Abragam, 1961):

R1 = 3d2JDD(ωN)+ c2JCSA(ωN)

+ d2[JDD(ωH − ωN)+ 6JDD(ωH)] (1)

R2 = 1
2{d2[4JDD(0)+ 3JDD(ωN)]
+ c2[4JCSA(0)+ 3JCSA(ωN)]
+ d2[JDD(ωH − ωN)+ 6JDD(ωH)

+ 6JDD(ωH + ωN)]} (2)

where d = −(µo/(4π))γHγNh/(4πr3
HN ), c =

γNBo(σ|| −σ⊥)/3, rHN is the internuclear15N-1H dis-
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tance,Bo is the magnetic field strength,σ|| − σ⊥ is the
anisotropy of the15N chemical shift tensor,γH , γN
andωH , ωN are gyromagnetic ratios and resonance
frequencies of the nuclei, andh is Planck’s constant.
The spectral density functions,JDD(ω) andJCSA(ω),
are Fourier transforms of the corresponding autocorre-
lation functions,CDD(t) andCCSA(t), characterizing
reorientation of the unique axis of the15N-1H dipo-
lar coupling (NH-vector), and of the unique axis of
the 15N CSA tensor (CSA-vector), respectively. Ax-
ial symmetry of the15N CSA tensor is assumed here;
therefore, a unit vector along the unique axis (associ-
ated with the least shielded component) of the CSA
tensor will be referred to as the CSA-vector. Note that
terms describing cross correlation between the15N-
1H dipolar interaction and15N CSA (see below) are
omitted in Equations 1–2; these effects are usually
suppressed in the experiment by using proper decou-
pling techniques (Kay et al., 1992; Palmer et al.,
1992).

For the purpose of this paper we will neglect
the effect of local dynamics of the macromolecule,
considering only overall rigid body rotations of the
molecule and assuming each of the vectors (NH, CSA)
being fixed in its equilibrium orientation. Including
local mobility introduces additional complexity in the
picture, because of anisotropic character of the local
dynamics in a protein (Fushman et al., 1994; Bremi
et al., 1997; Fischer et al., 1997), which might result
in local motion of the NH and CSA vectors char-
acterized by different amplitudes (order parameters),
as observed e.g. in molecular dynamics simulations
(Chatfield et al., 1998; S. Pfeiffer, private communi-
cation). Assuming a relatively small angle between
the two vectors and small amplitudes of local mo-
tion in the regions of well-defined secondary structure,
these differences are likely to have small second order
effects as compared to the one considered here.

Assuming an axial symmetry of the overall ro-
tational diffusion tensor, the relevant autocorrelation
functions can be written as (see e.g. Woessner, 1962)

CV (t) = 1
5{ 14e−t/τ1(3 cos2 βV − 1)2

+ 3e−t/τ2 cos2 βV sin2 βV

+ 3
4e
−t/τ3 sin4 βV } (3)

whereV = DD or CSA; βDD and βCSA are polar
angles characterizing orientation of the NH and CSA
vectors, respectively, with respect to the z-axis of the
molecular frameM defined by the principal axes of

the overall rotational diffusion tensor of the molecule
(Figure 1); and

τ−1
1 = 6D⊥; τ−1

2 = 5D⊥ +D||;
τ−1

3 = 2D⊥ + 4D||; (4)

whereD|| andD⊥ denote principal values of the dif-
fusion tensor. A similar treatment could be derived for
the general case of a fully anisotropic tensor.

The noncollinearity of the1H-15N dipolar and15N
CSA tensors will, in general, result in differences be-
tween the anglesβDD and βCSA (Figure 1), hence
CDD(t) 6=CCSA(t) andJDD(ω) 6= JCSA(ω). To assess
the difference between the two correlation functions,
consider the transformationM→CSA from the mole-
cular frame to the local frame of the CSA tensor as a
result of two subsequent transformations:M → NH
andNH→ CSA (Figure 1). Let�M→NH ≡ {α, β, γ}
and�NH→CSA ≡ {φ, θ,9}, be sets of Euler angles
describing orientation of the dipolar tensor with re-
spect to the molecular frameM , and of the CSA tensor
with respect to the dipolar tensor coordinate frame,
respectively. Note thatβ ≡ βDD . Without loss of
generality, angleα can be set to zero for the axially
symmetric diffusion tensor for overall rotation. As-
suming axial symmetry of the15N CSA tensor,9 can
also be set to 0. Further simplification is possible based
on the observation (Harbison et al., 1984; Hartzell et
al., 1987; Oas et al., 1987; Hiyama et al., 1988; Mai et
al., 1993) that the unique axis of the CSA tensor lies
approximately in the peptide plane, with the y-axes of
both dipolar and CSA tensors being almost collinear
(Figure 1), i.e.φ is zero. The orthogonality of one of
the principal axes (here yCSA) of the chemical shield-
ing tensor to the peptide plane is expected (Harbison
et al., 1984; Oas et al., 1987) due to planar symmetry
of the peptide bond. Of the three remaining variable,
nonzero angles,β andγ characterize the orientation of
the NH vector and of the peptide plane, respectively,
with respect to the diffusion tensor frame, andθ is the
angle between the NH and CSA vectors (Figure 1).
After the rotational transformations using the Wigner
rotation matrices (Brink and Satchler, 1993), it can be
shown that:

CCSA(t) = CDD(t)

+ 1C(t,D‖,D⊥, β, γ, θ) (5)
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whereCDD(t) is given in Equation 3,

1C(t,D‖,D⊥, β, γ, θ) =
3
20

{
(e−t/τ1 − e−t/τ2)Fa(β, γ, θ)

−(e−t/τ2 − e−t/τ3)Fb(β, γ, θ)
} (6)

and
Fa(β, γ, θ) =

sin2 θ cos2 β(3 sin2 β− 3 cos2 β sin2 θ− 1)
−4 cosγ sinθ cosθ sinβ cosβ(3 cos2 θ cos2 β− 1)
+2 cos2 γ sin2 θ sin2 β(9 cos2 θ cos2 β− 1)
−3 cos3 γ sin3 θ sin3 β(4 cosθ cosβ− cosγ sinθ sinβ)

Fb(β, γ, θ) =
sin2 θ cos2 β(sin2 β− cos2 β sin2 θ+ 1)
−4 cosγ sinθ cosθ sinβ cosβ(cos2 θ cos2 β− 1)
+2 cos2 γ sin2 θ sin2 β(3 cos2 θ cos2 β− 1)
− cos3 γ sin3 θ sin3 β(4 cosθ cosβ− cosγ sinθ sinβ)

(7)

Note that1C can be positive or negative, while
CCSA = CDD+1C is always positive. As one can see
from Equations 5–7, the difference betweenCCSA(t)
and CDD(t), 1C, vanishes in the case of isotropic
overall rotational diffusion (D|| = D⊥; τ1 = τ2 =
τ3), as well as when the CSA and NH vectors be-
come collinear (θ = 0). The relationCCSA(t) ≡
CDD(t) holds also for certain sets of{β, γ} values, e.g.
{90◦,90◦} (see Figure 2), which cause both NH and
CSA vectors to have the same tilt angle towards the z-
axis (D||) of the diffusion tensor frame. Equations 1–2
can now be recast as follows:

R1 = 3(d2+ c2)JDD(ωN)

+d2[JDD(ωH − ωN)+ 6JDD(ωH)]
+3c21J(ωN,D||,D⊥, β, γ, θ) (8)

R2 = 1
2{(d2+ c2)[4JDD(0)+ 3JDD(ωN)]
+d2[JDD(ωH − ωN)

+6JDD(ωH)+ 6JDD(ωH + ωN)]}
+ 1

2c
2[41J(0,D||,D⊥, β, γ, θ)

+31J(ωN,D||,D⊥, β, γ, θ)] (9)

These expressions differ from the conventionally
used equations for15N relaxation rates only by the
terms

1J(ωN,D||,D⊥, β, γ, θ) =
1
20

(
D||
D⊥ − 1

)[
1−ω2τ1τ2
1+ω2τ2

1
Fa(β, γ, θ)

−3τ3
τ1

1−ω2τ2τ3
1+ω2τ2

3
Fb(β, γ, θ)

]
τ2

1+ω2τ2
2

(10)

Figure 2. Contour map of relative percentile differences between
JCSA(ω) and JDD(ω) for ω = 0 (a)–(c) andω = ωN (d), for
various degrees of anisotropy: (a)D||/D⊥ = 1.5; (b) D||/D⊥ = 2;
(c,d) D||/D⊥ = 3. Numbers indicate values of1J(ω)/JDD(ω) in
percent. The calculations were performed for resonance frequency
of 600 MHz assumingθ = −17◦ (Fushman et al., 1998b) and an
overall correlation time of 5 ns. Solid and dashed lines indicate
positive and negative values of1J , respectively. Dotted lines cor-
respond to loci of those {β, γ}-values for which both the NH and
CSA vectors happen to have the same tilt angle from the z-axis (i.e.
θ corresponds to a pure rotation around the z-axis), hence CCSA(t)
= CDD(t).

which are Fourier transforms of1C(t,D||,D⊥, β,
γ, θ), Equations 5–7. As one can see from Equations 7
and 10, these additional terms scale as the degree of
anisotropy of the overall motion, (D||/D⊥ − 1), and
vary, both in the magnitude and in sign, for vari-
ous sets ofβ, γ, and θ. As expected, the effect of
noncollinearity of15N CSA and15N-1H dipolar inter-
action is sensitive to both the overall hydrodynamic
properties,D||, D⊥, and the atomic-level details of
protein structure,β, γ, and the orientation of the CSA
tensor,θ.

Similar analysis applied to the cross correlation
function (e.g. Fischer et al., 1997) between15N CSA
and1H-15N dipolar interaction gives

CCROSS(t) = CDD(t)P2(cosθ)

+ 1CCROSS(t,D||,D⊥, β, γ, θ) (11)

whereP2(x) = 1
2(3x

2− 1) is the second-rank Legen-
dre polynomial, and1CCROSSis given by Equation 6,
with



143

Fa(β, γ, θ) = − 1
2 sinθ sinβ(4 cosθ cosβ cosγ

− sinθ sinβ cos 2γ)(3 cos2 β− 1)

Fb(β, γ, θ) = − 1
2 sinθ sin2 β[2 cosθ sin 2β cosγ

+ sinθ cos 2γ(cos2 β+ 1)] (12)

The cross correlation contribution to15N relax-
ation (Goldman, 1984) can then be written in the
following form:

η = dc[4JDD(0)+ 3JDD(ωN)]P2(cosθ)

+ dc[41JCROSS(0,D||,D⊥, β, γ, θ)
+ 31JCROSS(ωN,D||,D⊥, β, γ, θ)] (13)

where the1JCROSS terms are Fourier transforms of
1CCROSS(t,D||,D⊥, β, γ, θ) and can be represented
by Equation 10 withFa and Fb from Equation 12.
In the case of weak rotational anisotropy and/or small
anglesθ, the1JCROSSterms vanish, and Equation 13
reduces to the expression forη obtained by Tjandra et
al. (1996).

Results and discussion

The relevant spectral densitiesJDD(ω) andJCSA(ω)
were calculated as a function ofβ, γ, andθ for various
degrees of rotational anisotropy (Figures 2 and 3). As
one can see, the effect is rather small for moderate de-
grees of anisotropy (D||/D⊥ < 1.5). It increases with
the angleθ, as well as withD||/D⊥, and, forJ(ωN ),
also with the resonance frequency, and with the overall
correlation time (Figure 3). The regions of maximal
effect correspond toγ values of 0 or 180◦, i.e. when
the peptide plane is parallel to the diffusion axis.

At magnetic field strengths currently available, the
CSA contribution to15N relaxation rates is smaller
than the dipolar contribution (e.g.c2/d2 = 0.32 at
600 MHz), therefore the relative contributions from
the1J terms to Equations 8 and 9 are small at mod-
erate degrees of rotational anisotropy. Sincec scales
asBo, the effect of noncollinearity on15N relaxation
rates increases with magnetic field (Figure 4) and is
expected to become considerable at higher frequen-
cies (∼1 GHz), when the CSA contribution to15N
relaxation becomes comparable with the dipolar con-
tribution. Even at 600 MHz, the effect is expected to
be above the level of experimental errors inR1 andR2
determination (∼1%) for proteins withD||/D⊥ ≥ 1.5,
andτc > 5 ns.

For small values of the angleθ, the effect depends
approximately linearly onθ (Figure 3). Variations of
±5◦ in θ values observed in proteins (Fushman et al.,
1998b) will lead to±25% variations in the expected
perturbing effect in the relaxation rates.

In those cases when the contribution from the non-
collinearity is significant, a neglect of this effect in
the relaxation data analysis might render the results
of such analysis inaccurate.1J(0,D||,D⊥, β, γ, θ)
and 1J(ωN,D||,D⊥, β, γ, θ) are of opposite sign
(ω2

Nτ1τ2,ω
2
Nτ2τ3 > 1), and so are the variations

in R2 and R1 (Equations 8–10, Figure 2). The ratio
of the two relaxation rates can be approximated from
Equations 8 and 9, neglecting contributions from the
high-frequency components,J(ωH ), J(ωH ± ωN ), of
the spectral density function, as follows:

2R2− R1

R1
= 4JDD(0)

3JDD(ωN)

[
1+ c2

d2+ c2(
1J(0,D||,D⊥, β, γ, θ)

JDD(0)

− 1J(ωN,D||,D⊥, β, γ, θ)
JDD(ωN)

)]
(14)

Therefore the primary effect of the neglect of non-
collinearity is likely to be on theR2/R1 ratio. This
will affect accuracy and precision of the derived over-
all rotational properties including the principal values
and/or orientation of the principal axes of the diffu-
sion tensor. Since bothR1 andR2 are expected to vary
on a per residue basis as a function ofβ, γ, and θ

(Equations 8–10), the extent of the effect will depend
on the details of protein structure, e.g. on the distri-
bution of peptide plane and NH bond orientations in
the diffusion frame for a particular protein (Figure 5).
For example, relative variations inR1 andR2 of the
order of−5% and+5%, respectively, are expected
to result in a 10% overestimation in the localR2/R1
value. This in turn could lead to an∼5% overesti-
mation of the apparent overall correlation time, if all
peptide planes were characterized by similar sets of
the {β,γ,θ} values, as one might anticipate, e.g., in
helical bundles. In those cases when the {β,γ,θ}-space
is more uniformly sampled, both positive and negative
sign variations inR2/R1 are likely and the net effect
on τc might be reduced. However, site-specific vari-
ations inγ andθ are expected to result in deviations
in the apparentR2/R1 vs. β dependence from the one
expected under the assumption of collinear NH and
CSA vectors. This is expected to affect both the preci-
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Figure 3. The maximal range of relative variations in (a)J(0) and (b) J(ωN) due to noncollinearity of the15N CSA and 15N-1H
dipolar interaction as a function ofθ, for various degrees of anisotropy,D||/D⊥, indicated by numbers. The graphs represent
δ(1J/J) = max(1J/J) − min(1J/J) for β, γ in the range from 0 to 180◦ (Figure 2). The data indicated by solid lines were obtained
for a resonance frequency of 600 MHz, assuming the overall correlation timeτc of 5 ns. To illustrate the dependence of the effect on the
field strength and on the overall correlation time, the dashed and dotted lines in (b) correspond toτc = 10 ns (at 600 MHz) and to 800 MHz
(τc = 5 ns), respectively.

sion and accuracy of those methods of characterization
of the overall rotational diffusion which are based on
orientational dependence ofR2/R1 (Lee et al., 1997;
Clore et al., 1998; Clore and Gronenborn, 1998).
A model-independent analysis of15N CSA was sug-
gested recently (Fushman and Cowburn, 1998), based
on theη/R2 ratio. Using this approach, we demon-
strated (Fushman et al., 1998b) that the magnitude
and orientation of the15N CSA tensor in proteins can
be determined from relaxation data in solution. The
effect of anisotropy combined with noncollinearity of
dipolar and CSA tensors was not considered. The ef-
fect on the ratio can be represented with the same
approximations used above as:

η
R2
= 2dcP2(cosθ)

d2+c2
{

1+
41JCROSS(0,D||,D⊥,β,γ,θ)+31JCROSS(ωN ,D||,D⊥,β,γ,θ)

[4JDD(0)+3JDD(ωN)]P2(cosθ)

− c2

d2+c2
41J(0,D||,D⊥,β,γ,θ)+31J(ωN ,D||,D⊥,β,γ,θ)

4JDD(0)+3JDD(ωN)

} (15)

The terms containing1J and1JCROSS describe
additional effects of noncollinearity, and partially
compensate each other. The residual contribution from
these terms is proportional to the degree of rotational
anisotropy and, for largeτc(τc � 1/ωN), does not
depend on the molecular weight. Assuming CSA=
−160 ppm,θ = −17◦, and {β,γ} in the 0–180◦ range,
the expected maximal variations inη/R2 at 600 MHz
are 2%, 3.6%, and 6.4% forD||/D⊥ = 1.5, 2, and 3,
respectively. It can be shown that the primary effect

Figure 4. The maximal range of relative contributions toR2 (solid
lines) andR1 (dotted lines) due to noncollinearity of the15N-1H
dipolar and15N CSA tensors, as a function of resonance frequency,
for various degrees of overall rotational anisotropy,D||/D⊥ (indi-
cated in the figure). Shown is the difference between the greatest
and the least values of[R(1J) − R(0)]/R(0), in percent, due to
presence of the1J terms in Equations 8 and 9, assuming CSA=
−160 ppm,θ = −17◦, andτc = 5 ns.

of these variations inη/R2 is on the derivedθ values
and not CSA. The expected changes in15N CSA andθ
values for human ubiquitin derived using this extended
η/R2 approach from those of (Fushman et al., 1998b)
are very small, due to small rotational anisotropy;
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maximum changes expected forη/R2 are≤ 1%, of
the order or less than the experimental errors. When
the molecular parameters for1J ’s are available, exact
derivation of CSA values using Equation 15 for the
cases of significant rotational anisotropy is practical.

Similar considerations can be applied to assess
the effect of noncollinearity of the13C′ CSA and
13C′-13Cα dipolar tensor on carbonyl relaxation in
uniformly 13C-labeled proteins (Fischer et al., 1997).

The noncollinearity of the15N CSA and1H-15N
dipolar tensors is also expected to have a signifi-
cant effect on relaxation-optimized experimental ap-
proaches, such as TROSY (Pervushin et al., 1997,
1998). The TROSY resonance line width (at half
height) in the15N dimension for amide groups is
1ν(15N) = π−1(R2 − η) Hz, where only contribu-
tions to relaxation from interactions within the amide
group are considered. Using Equations 9 and 13 and
neglecting the high-frequency components ofJ (ω) in
Equation 9, it can be recast as follows:

1ν(15N) = π−1{ 12[d2+ c2
−2dcP2(cosθ)][4JDD(0)+ 3JDD(ωN)]
+1

2
c2[41J(0, D||,D⊥, β, γ, θ)

+31J(ωN ,D||,D⊥, β, γ, θ)]
−dc[41JCROSS(0,D||,D⊥, β, γ, θ)
+31JCROSS(ωN,D||,D⊥, β, γ, θ)]} (16)

How does this affect the TROSY experiment? For
spherical proteins, all1J ’s vanish, and the opti-
mal conditions for TROSY are:c = dP2(cosθ),
which gives Bo(opt) = −(µo/(4π))3γHhP2(cosθ)
[4πr3

HN(σ|| − σ⊥)]−1. A nonzero angleθ (hence
P2(cosθ) < 1) will shift the optimal resonance
frequency towards lower values than expected for
collinear 15N CSA and1H-15N dipolar tensors. As-
suming CSA= −160 ppm,rHN = 1.02 Å, andθ =
−17◦, the optimal resonance frequency is 924 MHz,
compared to 1.06 GHz forθ = 0. The residual
TROSY linewidth at the optimal conditions (further
referred to as1νo) is expected to be proportional to
protein molecular weight, and is predicted to be 1.6,
4.7, and 25 Hz, for spherical proteins with molecular
weights of 50, 150, and 800 kDa (τc of 20, 60, and
230 ns (Wüthrich, 1998)). When rotational anisotropy
is present, the1J -terms also contribute to the ob-
served1ν(15N), their contribution being proportional
to (D||/D⊥ − 1) and to molecular weight. All terms in

Equation 16 are orientationally dependent. The result-
ing linewidth is expected to vary for different amide
groups’ geometries, reflecting structure-specific varia-
tions in the NH-bond and CSA tensor orientations (β,
γ angles) with respect to the rotational diffusion axes.
The calculated1ν(15N) range, in per cent of1νo, is
from 88 to 112%, 81–126%, 73–153%, and 67–208%
for D||/D⊥ = 1.5, 2, 3, and 5, respectively. In addition,
site-specific variations in the local orientation (θ angle)
as well as in the magnitude of the15N CSA tensor
(Fushman et al., 1998b) will also alter the observed
linewidths. For example, for isotropic rotational dif-
fusion, ±5◦ variations inθ will result in the actual
linewidths ranging from 54% to 160% of1νo (e.g. 2.6
to 7.6 Hz forτc = 60 ns); whereas±40 ppm variations
in CSA magnitude are expected to cause only up to a
20% increase in1νo; similar numbers characterize an
increase in the1ν(15N) range in the case of rotational
anisotropy.

These calculations suggest that the effect of non-
collinearity of the15N CSA and1H-15N dipolar in-
teractions on the TROSY linewidth might become
significant for proteins with high degree of rotational
anisotropy and large molecular weight. This will affect
the ability to observe all amides with equal efficiency
in the TROSY experiment. On the other hand, this
might provide a valuable source of structural informa-
tion (onθ, β, γ) encoded in the linewidths/intensities
according to Equation 16.

More complex models of molecular shape and mo-
tion than the ellipsoid model used here are obviously
possible, and the approach of Equations 3–13 could be
generalized.

Conclusions

Current approaches to15N relaxation in proteins as-
sume that the15N-1H dipolar and15N CSA tensors are
collinear. It is shown here that different orientation of
the two tensors, experimentally observed in proteins,
nucleic acids, and small peptides will result in differ-
ences in NMR-relevant autocorrelation functions and
spectral densities characterizing reorientation of the
15N-1H dipolar and of the15N CSA tensors in the case
of anisotropic overall rotation. The standard treatment
of the rates of longitudinal and transverse relaxation
of amide15N nuclei is extended in order to account
for the effect of noncollinearity of the15N-1H dipolar
and15N CSA tensors. This effect shown to be propor-
tional to the degree of anisotropy of the overall motion,
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Figure 5. Two examples of a distribution of {β,γ} values in proteins: (a) human ubiquitin and (b) Pleckstrin Homology (PH) domain of
β-adrenergic receptor kinase (βARK, PDB entry 1bak) (Fushman et al., 1998a). Symbols indicate the location of each individual amide group
on the {β,γ} map. Lines represent contour levels (indicated with numbers (%) for 600 MHz) of the relative deviation, [R2(1J)/R1(1J) −
R2(0)/R1(0)]/[R2(0)/R1(0)], of theR2/R1 ratio due to the effect of noncollinearity. In (b), residues 87–104 belonging to theα-helix of βARK
are indicated with open circles, while the rest of the protein is shown as solid circles, to illustrate the nonuniform distribution of NH bonds
orientation because the unique axis of the diffusion tensor is nearly parallel to the helical axis (Fushman et al., 1998a). Atom coordinates
for ubiquitin are from the crystal structure (PDB entry 1ubq); hydrogen atoms were added using Insight II (Biosym). For both ubiquitin and
βARK structures, the deviations of the NHi bond from the C′i−1-Ni − Cαi plane were less than 0.3◦. The rotational anisotropy of the proteins,

determined from15N relaxation studies, is characterized byD||/D⊥ = 1.17 for ubiquitin (Tjandra et al., 1995) and 1.35 forβARK PH domain
(Fushman et al., 1998a). Residues located in highly flexible termini (residues 73–76 in ubiquitin, 1–9 and 106–119 inβARK) and flexible loops
(18–26, 42–48, and 74–76 inβARK) are not shown. While the effect of noncollinearity is below the level of experimental uncertainty in the
15N relaxation data reported for ubiquitin (Tjandra et al., 1995), it increases linearly with (D||/D⊥ − 1) and is comparable to the experimental
uncertainty for theβARK PH domain.

D||/D⊥ − 1, is sensitive to orientation of the peptide
plane with respect to the diffusion tensor frame. Al-
though negligible at small degrees of anisotropy, the
effect is predicted to become significant forD||/D⊥ ≥
1.5 and at high magnetic fields.

The effect of noncollinearity of15N CSA and
15N-1H dipolar interaction is therefore expected to
be sensitive to both gross (hydrodynamic) properties
and atomic-level details of protein structure. Incor-
poration of this effect into relaxation data analysis
is likely to improve both precision and accuracy of
the derived characteristics of protein dynamics, espe-
cially at high magnetic fields and for molecules with
high degree of anisotropy of the overall motion. The
effect might prove useful for relaxation-optimized ex-
perimental approaches which rely on matching dipolar
and CSA contributions, like TROSY (Pervushin et al.,
1997).
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Notes added during revision

After this paper was submitted, a paper became avail-
able on the J. Am. Chem. Soc. web page (Boyd and
Redfield, 1998), where the authors present a similar
idea of differences between the spectral density func-
tions describing contributions to amide15N relaxation
from reorientations of1H-15N dipolar interaction and
15N CSA. They show that an introduction of the angle
between the CSA and dipolar vectors as an additional
fitting parameter, assumed to be uniform throughout
the protein, in combination with the axially symmetric
rotational diffusion model, leads to an improved agree-
ment between the experimental and calculated T2/T1
ratios for hen lysozyme.
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